= 301A Millivoltmeter TECHNICAL MANUAL # RACAL INSTRUMENTS LIMITED AIRMEC DIVISION DUKE STREET . WINDSOR . BERKS Tel: Windsor 69811 Prepared by Group Publicity and Technical Services Wokingham . Berks ## CONTENTS | | | Pag e | | | | | |---------------|--|-----------------------|--|--|--|--| | PART 1 TEC | hnical specification | | | | | | | PART 2 OPI | OPERATION DESCRIPTION & MAINTENANCE | | | | | | | . و كله | OPERATION . | | | | | | | | Initial Adjustments | 1 | | | | | | | General | 1 | | | | | | | D.C. Measurement | 1 | | | | | | | A.C. Measurement | 2 | | | | | | 2. | CIRCUIT DESCRIPTION | 4 | | | | | | 3. | SERVICING | | | | | | | | Pilot Lamp | 5 | | | | | | | Valves and Rectifier | 5 | | | | | | | A.C. Calibration | 5 | | | | | | | D.C. Calibration | 6 | | | | | | | Synchronous Chopper | 6 | | | | | | | Valve VI | 6 | | | | | | | Probe Diodes MR1, MR2 | 6 | | | | | | | Component List | 713 | | | | | | | Illustrations | | | | | | | F i g | | | | | | | | 1 | Circuit Diagram | | | | | | | 2 | Righthand View – Component Location | | | | | | | 3 | Lefthand View - Component Location | | | | | | | 3
4 | Approximate Impedance/Frequency Charac | cteristics (6658-901) | | | | | #### TECHNICAL SPECIFICATION Frequency Range 100Hz to 900MHz: 100Hz to 100kHz using LF input: 50kHz to 900MHz using high impedance probe. AC Range $300\mu V$ to 3V in eight ranges:- .001, .003, .01, .03, 0.1, 0.3, 1, 3V f.s.d. AC Accuracy | Range | Free Probe
with nose
cap fitted | Probe mounted
50 or 75Ω,
using correction
curves | Probe
Mounted
LF | |---------------------|---------------------------------------|---|------------------------| | 1mV Range | | | | | 100Hz - 100kHz | - | æ | ±10% f.s.d. | | 100Hz - 200MHz | | ±10% f.s.d. | _ | | 50kHz - 200MHz | ±10% f.s.d. | - | - | | 200MHz - 900MHz | ±15% f.s.d. | ±15% f.s.d. | - | | 3mV Range and above | | | | | 100Hz - 100kHz | | _ | ±5% f.s.d. | | 100Hz - 200MHz | _ | ±5% f.s.d. | - | | 50kHz - 200MHz | ±5% f.s.d. | onsi | - | | 200MHz - 600MHz | ±10% f.s.d. | ±10% f.s.d. | *** | | 600MHz - 900MHz | ±15% f.s.d. | ±10% f.s.d. | _ | Probe a.c. Input Impedance At $100kHz - 100k\Omega$ and 3pF At $10MHz - 50k\Omega$ and 3pF At 200MHz - $3k\Omega$ and 3pF These are approximate figures at an input level of 0.1V r.m.s. Coaxial Input 50 and 75Ω input impedances are available by using an adaptor unit on the front panel. The connectors used are BNC type. VSWR V.S.W.R. not greater than 1.5 on both 50Ω and 75Ω terminations, up to 900 MHz. DC Ranges 100µV to 10V in ten ranges:- .0003, .001, .003, .01, .03, 0.1, 0.3, 1, 3, 10V f.s.d. DC Accuracy .001V range and above - better than ±5% f.s.d. .0003V range - better than $\pm 10\%$ f.s.d. DC Input Impedance Exceeds $5M\Omega$. Stability For a 10% mains variation, the change in meter reading is not greater than $\pm 1.1/2\%$ f.s.d. on all ranges. Valves 1 off ECC83, EF86 12AT7, 150C4, 6X4 Ambient Temperature The instrument is suitable for use in ambient temperatures from 0°C to +40°C. Power Supplies 50Hz a.c. mains. Mains tapping panel for 110, 125, 210, 230 and 250V. Consumption approximately 20 watts. Dimensions 8" wide by 11.1/2" high by 14" deep, over projections (21 by 29 by 36cm). Finish Light grey panels, blue grey stoved textured vinyl. Weight 19 lb (8.75kg). ## SECTIONI #### OPERATION #### INTRODUCTION 1.1 The Millivoltmeter Type 301A is a lightweight, mains operated, easily transportable instrument for measuring voltages from 300µV to 3V in the frequency range 100Hz to 900MHz, and 100µV to 10V d.c. The d.c. inputs are amplified by a chopper type d.c. amplifier and applied to the meter circuit. The a.c. inputs are rectified in a probe, which, for low frequency measurements, may be plugged into a holder on the front panel to introduce additional d.c. blocking capacitance; alternative positions on the holder provide 75 or 50Ω coaxial inputs terminated in matched loads. The rectified output is displayed on a 4.1/2" scale meter. #### INITIAL ADJUSTMENTS 1.2 The instrument leaves the Works with the voltage tapping panel set for operation from 230V a.c. mains. If the supply voltage differs from this, alter the voltage selector accordingly. (The voltage selector is at the back of the instrument). For operation from 110 – 130V mains, change the fuse for one of 2A rating. (The fuseholder is adjacent to the voltage selector.) #### **OPERATION** #### General 1.3 All the controls and inputs are located on the front panel of the instrument. When not in use, the probe may be stowed by feeding the cable and probe back through the aperture in the front panel. Stowage for the probe cap and also four bollards for stowing the mains lead are provided on the rear panel. A tilt stand is provided under the bottom cover. This stand is erected by lifting the instrument and pulling the stand forward on its hinges. #### D.C. MEASUREMENT 1.4 Set the a.c. range selector (marked AC) to DC and the d.c. range selector to the appropriate value of full scale deflection. Connect the input to the DC INPUT socket. Adjust for minimum residual reading by using the DC BALANCE control. This control must be turned slowly to avoid an overshoot effect during setting. #### AC Measurement WARNING: To avoid damage to the probe diodes, observe the following precautions:- - (a) AC input level Do not exceed 3V r.m.s. - (b) Superimposed d.c. When using the 50 or 75Ω input socket, the applied a.c. signal must have zero d.c. component. When using the probe with the nose cap fitted, or when the probe is inserted in the LF adaptor, do not exceed ±250V d.c. - (c) Do not use the probe free without the nose cap. - 1.5 Set the d.c. range selector (marked DC) to AC and the a.c. range selector to the appropriate value of full scale deflection. - 1.6 Inputs in the frequency range 50kHz to 900MHz may be connected either directly to the projecting tips of the probe cap, or to the 50 or 75Ω adaptors by plugging the probe into the appropriate position in the adaptor unit. (Remove the probe nose cap before plugging in.) At frequencies above 300MHz, it is recommended that either the 50Ω or 75Ω adaptors be used in conjunction with the calibration curves supplied on the side of the instrument. The appropriate correction factor may be interpolated for signal levels up to 300mV, resulting in an overall accuracy of measurement of ±10% f.s.d. - 1.7 For inputs in the frequency range 100Hz 50kHz the probe is normally used in the LF position on the adaptor, but the 50Ω or 75Ω terminations may be used provided that there is no d.c. component present on the signal. #### NOTE If a film of moisture is allowed to form on the silicon fibreglass insulatting disc which carries the LF probe contact in the RF block, it may be impossible to obtain a low level AC BALANCE when using the LF connection. If this occurs, normal conditions may be quickly restored by placing the instrument in a warm dry atmosphere, or alternatively directing a current of warm dry air at the insulating disc for a few minutes. The low impedance 50Ω and 75Ω inputs are NOT affected by similar conditions of humidity. On the 30mV and higher ranges the AC BALANCE control does not need adjustment. On the 3mV and 1mV ranges, adjust the AC BALANCE control for minimum scale reading before applying the input. On the 1mV range the minimum residual reading should be at least 3/8" below the lowest calibration mark on the scale. - Because of the high sensitivity and extremely wide bandwidth of the instrument, strict precautions must be observed in making the connections between the probe or probe adaptors and the equipment under test when working at low a.c. input levels. The adaptor positions are particularly sensitive to spurious mains frequency voltages developed along the earth line. - 1.10 Higher frequency components may also be picked up on the probe circuit and produce an excessive residual reading on the meter, particularly on the ImV a.c. range. The recommended procedure is to plug the probe into the adaptor socket, with all input connections removed, and adjust the balance control for an acceptably low residual reading. When this has been done, connect the input to the probe or adaptor as required, reduce the source voltage to zero, and recheck the residual reading. In adverse locations (e.g. where the stray radiation level is high), local screening for the probe or complete isolation of the equipment in a screened room may be found to be essential. #### NOTES - 1. When adjusting for minimum residual reading, turn the AC BALANCE control slowly to avoid overshooting the minimum. - 2. The two locked adjustment screws on the RF adaptor block are factory preset for optimum VSWR, and require no adjustment in normal use. #### SECTION 2 #### CIRCUIT DESCRIPTION - 2.1 The Circuit Diagram is shown at Figure 1 and the Component List at Table 1. Figures 2 and 3 give the position of the major components, and Figure 4 is a graph showing approximate probe impedance/frequency characteristics. - 50Ω and 75Ω terminations are available by plugging the high impedance probe into the appropriate adaptor SKTC or SKTB on the front panel. The a.c. input is rectified by the germanium diodes MRI and MR2 in the probe, and the balanced d.c. output is fed via the attenuator and switch SA to the 50 Hz synchronous chopper CH1. The AC BALANCE control RV1 permits the residual reading on the 1mV and 3mV a.c. ranges to be partly balanced out by injecting a d.c. signal at the input to the attenuator. - 2.3 The LF adaptor extends the frequency range at high input impedance from 50 kHz to 100 kHz by replacing the probe nose cap capacitor C2 by capacitor C1. The diode protection circuit MR8, MR9, MR10, MR11 limits the surge when d.c. is superimposed on the a.c. signal. - 2.4 The d.c. input from socket SKTD is fed via the step attenuator and the DC switch SB to the synchronous chopper CH1 and thence to the amplifier on alternate half cycles. The potential divider circuit RV2 (DC BALANCE), R33, R34 and R36 provides a voltage developed across R36 to equalise for positive and negative inputs to the instrument. - 2.5 The output from the chopper is amplified by a 4-stage 50 Hz amplifier. L1, C18 form a shunt resonant circuit tuned to 50 Hz, used only on the 1mV AC range. The gain of the amplifier is switched for each of the a.c. ranges by switching the negative feedback applied to valve pairs V1a, V1b, and V2, V3. Potentiometers RV11, RV21 and RV22 give a preset adjustment of the gain for the d.c. ranges. - 2.6 The output of the cathode follower stage V3b is rectified by MR3, MR4 and MR6 and fed to the meter M1. On the a.c. ranges, the non-linearity of the probe diodes MR1 and MR2 is compensated by diodes MR5 and MR12 and the appropriate preset potentiometers shunting the meter circuit. - 2.7 The power supply consists of a full wave rectifier V6 with R C smoothing. Neon valve V5 provides a stabilised +150V supply, and rectifier MR7 provides a d.c. heater supply for V1 and V2. #### SECTION 3 #### SERVICING - 3.1 Valves, rectifiers, pilot lamp, fuse and synchronous chopper are the only servicing changes normally required. Positions of major components are shown in Figures 2 and 3. - 3.2 The use of switch cleaning lubricant on the wafer switches in this instrument is not recommended. #### Pilot Lamp 3.3 The pilot lamp (ILP1) is removed by unsoldering the black and red leads and removing the circular clip around the body of the lamp. #### Valves and Rectifier - 3.4 Rectifiers MR3, MR4, MR6, MR7, MR8, MR9, MR10 MR11, MR13 and valves V5 and V6 may be changed without affecting the calibration. - 3.5 Changing V1, V2, V3, MR1, MR2, MR5 or MR12 may affect the calibration of the instrument. Details of the readjustments necessary are given below. #### A.C. Calibration 3.6 The Millivoltmeter should be calibrated against a 1% instrument at a frequency of approximately 100kHz. The calibration for each range is adjusted by two potentiometers, details of which are given in the table below. One potentiometer determines the gain at 1/3 f.s.d. and the other determines the indication at f.s.d. The adjustment at 1/3 f.s.d. must be done first in each case. | Range | Adjust at 1/3 f.s.d. | Adjust at f.s.d. | | |-------|----------------------|------------------|--| | Ĩm∨ | R∨10 | RV17 | | | 3mV | RV9 | R∨20 | | | 10mV | R∨8 | RV16 | | | 30mV | R∨7 | RV15 | | | 100mV | R∨6 | R ∨14 | | | 300mV | R∨5 | RV13 | | | ïV | R√4 | RV19 | | | 3∨ | R√3 | RV12 | | #### D.C. Calibration - 3.7 Inputs of $300\mu V$ and 1mV, and 3mV are required for calibrating the d.c. ranges. Set the DC switch to $300\mu V$ and connect to a $300\mu V$ source. Adjust RV11 until the meter reads $300\mu V$. - 3.8 Set the DC switch to 1mV and connect the input to a 1mV source. Adjust RV21 until the meter indicates 1mV. - 3.9 Set the DC switch to 3mV and connect the input to a 3mV source. Adjust RV22 until the meter indicates 3mV. - No further calibration is required for the remaining (higher) ranges. NOTE-Set the DC Balance potentiometer RV2 so that the same deflection is obtained for equal positive and negative inputs in each case. #### Synchronous Chopper 3.11 Remove the upper dust cover and the chopper retaining bracket, and take out the plug from the top of the chopper. The chopper may then be removed. #### Valve V1 3.12 V1 is located in the screened box behind the front panel. To gain access to it, remove the plug from the chopper, take out the three screws on each side of the screened box top cover, and then remove the top cover itself. #### Probe diodes MR1, MR2 3.13 Exercise extreme care in soldering in new diodes. Use a heat shunt, apply the absolute minimum amount of heat necessary to ensure a satisfactory joint, and position them exactly as before. Re-setting of the VSWR adjustment screws may be necessary when diodes are replaced, and this requires the use of a slotted line. MILLIVOLTMETER TYPE 301A COMPONENT LIST | Circuit
Refe re nce | Details | | Туре | | |--|---------------------------------------|-------------------------|---------------------------------|--| | Reference | Resistance
Ω | Tolerance
±% | Rating
W | | | Resistors | | | | | | Rī | 52 | 0.5 | 1/8 | Plessey Metalux AFL/F
AFL/F | | R2 | 75 | 0.5 | 1/8 | Plessey Metalux
AFL | | R3,4.
R5,6. | 470
22M | 10
10 | 0.1
1/4 | Erie 15
Dubilier BTT | | R7
R8,9.
R10,11.
R12,13.
R14,15. | 47k
10k
330k
4.7M
560k | 10
10
5
5
5 | 1/4
1/4
1/2
1/4
1/4 | RMA9 Erie
RMA9 Erie
C21 Welwyn
C21 Welwyn
C21 Welwyn | | R16,17.
R18,19.
R20,21.
R22,23
R24 | 47k
6.8k
1.5k
680
4.6M | 5
5
5
5
2 | 1/4
1/4
1/4
1/4
1/2 | C21 Welwyn
C21 Welwyn
C21 Welwyn
C21 Welwyn
C21 Welwyn | | R25
R26
R27
R28
R29 | 1.64M
494k
152k
47.5k
15k | 2
2
2
2
2 | 1/4
1/4
1/4
1/4 | C21 Welwyn
C21 Welwyn
C21 Welwyn
C21 Welwyn
C21 Welwyn | | R30
R31
R32
R33
R34 | 4.75k
2.19k
10M
100k
1k | 2
2
5
10
10 | 1/4
1/4
1/2
1/4 | C21 Welwyn
C21 Welwyn
C22 Welwyn
RMA9 Erie
RMA9 Erie | ## COMPONENT LIST | Circuit | | Details | | Туре | |---------------------------------|--|--------------------------|---------------------------------|---| | Reference | Resistance
Ω | Tolerance
±% | Rating
W | | | Resistors | | | | | | R35
R36
R37
R38
R39 | 4.7M
10
2.2k
10
10M | 5
10
5
10
10 | 1/4
1/4
1/4
1/4 | C21 Welwyn
RMA9 Erie
C21 Welwyn
RMA9 Erie
RMA9 Erie | | R40
R41
R42
R43
R44 | 47k
4.7M
1k
47k
1 M | 10
5
5
10
5 | 1/2
1/4
1/4
1/4
1/4 | RMA8 Erie
C21 Welwyn
C21 Welwyn
RMA9 Erie
Electrosil CJ42 | | R45
R46
R47
R48
R49 | Not used
Not used
10k
470k
1 M | 5
10
5 | 1/4
0.1
1/2 | C21 Welwyn
Erie 15
C21 Welwyn | | R50
R51
R52
R53
R54 | 470k
470k
6.8k
470k
2.2M | 10
5
5
10
10 | 0.1
1/4
1/4 | Erie 15
C21 Welwyn
C21 Welwyn
Erie 15
Erie RMA9 | | R55
R56
R57
R58
R59 | 470k
Not used
220k
1 M
100 | 5
5
10
10 | 1/2
1/4
1/4 | C22 Welwyn
C23 Welwyn
RMA9 Erie
RMA9 Erie | \sim | Circuit
Reference | | Details | | Туре | |------------------------|----------------------|-----------------|-------------------|--| | Kerejeries | Resistance
Ω | Tolerance
±% | Rating
W | | | Resistors | | | | | | R60
R61
R62 | 2.2k
820k
2.2k | 5
5
5 | 1/4
1/2
1/4 | C21 Welwyn
C22 Welwyn
C21 Welwyn | | R63
R64 | 100k
470 | 5
10 | 1/4
1/4 | C21 Welwyn
Dubilier BTT | | R65
R 66-R69 | 18k
Not used | 5 | 1/2W | C22 Welwyn | | R70 | 470k | 10 | 1/4 | Dubilier BTT | | R71 | 68k | 5 | 1/4 | C21 Welwyn | | R72 | 4.7k | 10 | 1/2 | RMA8 Erie | | R73 | 6.8k | 5 | 6 | Welwyn W24 | | R74 | 1k | 5 | 4 | Welwyn W22 | | R75 | 10 | 5 | 10 | Welwyn W24 | | R76
R77 | Not used
1M | 10 | 1/4 | Erie 16 | | R78,79.
R80,81. | 150
Not used | 10 | 0.1 | Morganite XL | | R82 | 39k | 5 | 1/4 | C21 Welwyn | | R83 | 5.9k | 5 | 1/4 | C21 Welwyn | | R84 | 2.2M | 10 | 1/4 | RMA9 Erie | | R85 | 2.7M | 5 | 1/2 | C22 Welwyn | | R86 | 820k | 5 | 1/2 | C22 Welwyn | | R87 | 470k | 5 | 1/4 | C21 Welwyn | | R88 | 3.9k | 5 | 1/4 | Erie MOG60 | | R 89 | 150k | 5 | 1/4 | C21 Welwyn | | Circuit
Reference | Details | | | Туре | |----------------------|--|-----------------|-------------|---| | Reference | Resistance
Ω | Tolerance
±% | Rating
W | | | Resistors | | | | | | R90
R91 | 1.5k
27k (A.O.C.) | 5
10 | 1/4
1/4 | Dubilier B.T.T. Dubilier B.T.T. | | Variable Resistors | | | | | | RV1 | 100k carbon, lin.
preset | 10 | 1/4 | Davall 83 | | RV2 | 1k carbon, lin.
preset | 10 | 1/4 | Davall 83 | | RV3-RV6,
RV8, RV9 | 2.5k carbon, lin. | | 1/4 | | | RV7 | preset
2.5k w.w. linear | 20
10 | 1/4 | E.P. Plessey
CLR/1106/11S
Colvern | | RV10 | 500 w.w. linear | 10 | 1 | CLR/1106/11S
Colvern | | RV11 | 1 M carbon, lin.
preset | 20 | 1/4 | E.P. Plessey | | RV12 | 250k carbon, lin.
preset | 20 | 1/4 | E.P. Plessey | | RV13 | 25k carbon, lin. preset. | 20 | 1/4 | E.P. Plessey | | RV14 | 5k carbon, lin.
preset. | 20 | 1/4 | E.P. Plessey | | RV15,16,17.
RV18 | 2.5k carbon, lin.
preset.
Not used | 20 | 1/4 | E.P. Plessey | | RV19 | 25k carbon, lin. preset. | 20 | 1/4 | E.P. Plessey | | Circuit
Reference | Details | | Type | | |---------------------------------------|--|---------------------------------------|-------------------------------|---| | Reference | Resistance Ω | Tolerance
±% | Rating
W | | | Variable Resistors | | | | | | RV20 | 2.5k carbon, lin. | 20 | 1/4 | E.P. Plessey | | RV21
RV22 | 250k carbon, lin.
preser
50k carbon, lin. | 20 | 1/4 | E.P. Plessey | | NV22 | preset | 20 | 1/4 | E.P. Plessey | | Capacitors | Capacitance
F | | | | | C1
C2
C3,4
C5-9
C10 | 0.5 _µ
1000 _p
1000p feed throug
0.1 _µ
200 _µ | 20
+50-20
yh -
10
+100-20 | 350
350
500
150
6 | Hunts 301/1
K350081/831 Erie
K120051/700B Erie
GEC PFT
Plessey 402/1/01284/001 | | C11
C12
C13 | 0.003 _µ
0.022 _µ
Not used | 10
10
+50-20 | 150
125
350 | GEC PFT
Mullard C296AA/A22K | | C14
C15 | 16+32+32 _µ
0.005 _µ | 25 | 350 | Hunts KB268T
Plessey 436/1/80310/010 | | C16
C17
C18
C19
C20 | 100μ
50μ
0.2μ
100μ
0.1μ | +100-20
+100-20
5
+100-20 | 6
6
150
6
400 | Plessey 402/1/01207/001
Plessey CE1227/1
GEC Polyester
Plessey 402/1/01207/001
C296AC/A100K Mullard | | C21,22,23
C24
C25
C26
C27 | 0.001 _µ
0.1 _µ
0.1 _µ
50 _µ
0.01 _µ | 20
20
25
+100-20
20 | 500
250
150
6
350 | K350081-831 Erie
Hunts 301/1
Hunts 48A300
Plessey 402/1/01227/001
Plessey 436/1/80320/010 | | Circuit
Reference | Details | | | Туре | | |-------------------------------------|---|---|------------------------------|---|--| | Reference | Capacitance
F | Tolerance
±% | Rating
V | | | | C28, 29
C30
C31
C32
C33 | 1.0µ
50µ
50+50+8µ
1000+1000µ
1µF | 25
+100-20
+50-20
+50-20
20 | 150
6
350
12
350 | Hunts W48/A300
Plessey 402/1/01227/01
Plessey 402/1/08193/600
Plessey 402/1/17122/000
Hunts 301/1 | | | C34
C35
C36 | Not used
200µ
Not used | +100-20 | 6 | Plessey 402/1/01284/001 | | | C37 | 5000µ | +50-20 | 12 | Plessey 402/1/01203/001 | | | |] | Details | | | | | Valves V1 V2 V3 V4 V5 | Not used | | | Telefunken ECC83 Mullard EF86 Mullard ECC88 Mullard 150C4 Brimar 6X4 | | | MR1,2
MR3,4
MR5
MR6
MR7 | Germanium diode
Germanium diode
Silicon diode
Germanium diode
Rectifier | 3 | | Transitron S5706 Mullard OA.81 Mullard OA.202 Mullard OA.81 Westinghouse LT.61 | | | MR8,9
MR10,11
MR12
MR13 | Silicon diode
Zener diode
Silicon diode
Zener diode | | | Int. Rectifiers SD/915
Mullard OAZ.206
Mullard OA.202
Mullard OAZ.223 | | #### COMPONENTS LIST Circuit Reference Details Type Inductors and Transformers L1 Inductor Assembly Airmec 6658-290 T1 Transformer Assembly Airmec 6658-225 Switches SA Wafer 5 way 10 position NSF/Airmec 6658-454 SB Wafer 3 way 12 position NSF/Airmec 6658-455 SC Slide Switch DP Carr Fastener 81/811 Plug and Sockets LKA Voltage Selector Carr Fastener 81/1185 Bls SKTA, SKTC Socket Coaxial BNC SKTB Socket Coaxial fixed 75Ω BNC SKTD Socket Coaxial fixed 50Ω Greenpar GE 35062 Plug free, 50Ω matched Greenpar 35070C/12 Plug free 75Ω matched Greenpar 37570C/12 Misce!laneous Chi Synchronous Chopper 6.5V AEI CK.3. FS! Fuse miniature artifidge 2.5A Belling Lee 562/2.5A ILP1 Neon 190V - 260V West Hyde Developments 30PC/D M1 Meter 200 μ A f.s.d. (Grey Case) Weston Sangamo \$157 Scale to Airmec 6658-242 Resistance 1.25 k Ω ± 15% FIG. 2. RIGHT HAND VIEW - COMPONENT LOCATION FIG.3. LEFT HAND VIEW - COMPONENT LOCATION APPROXIMATE IMPEDANCE/FREQUENCY CHARACTERISTICS HIGH IMPEDANCE PROBE INPUT CAPACITANCE - 3 PF. INPUT LEVEL O-1 YOLT. # FIGURE 4 MILLIVOLTMETER TYPE 301A DRG. No. 6658-901